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Abstract: Global climate change and urban heat islands have generated heat stress in summer, which
does harm to people’s health. The outdoor public commercial pedestrianized zone has an important
role in people’s daily lives, and the utilization of this space is evaluated by their outdoor thermal
comfort and health. Using microclimatic monitoring and numerical simulation in a commercial
pedestrianized zone in Tai Zhou, China, this study investigates people’s outdoor thermal comfort
in extreme summer heat. The final results provide a comprehensive system for assessing how to
improve outdoor human thermal health. Under the guidance of this system, local managers can
select the most effective strategy to improve the outdoor thermal environment.

Keywords: Urban design parameter; Pedestrianized Zone; Thermal comfort; Measurement survey;
Numerical simulation

1. Introduction

The rapid development of urbanization in China brings not only convenient lifestyles, but also
the serious deterioration of living environments, such as the urban heat island in the summer, which
can negatively influence human thermal comfort [1]. The term ‘thermal comfort’ refers to “the
conditions of the inner mind that express satisfaction with the thermal environment”. An extreme
outdoor environment will adversely influence outdoor public health, especially that of the elderly
who are more sensitive to heat stress [2]. Human thermal comfort is largely determined by different
meteorological parameters, including wind velocity, air temperature, relative humidity and mean
radiant temperature [3]. All of these together can alter the energy exchange of the human body through
radiation, conduction and convection.

The commercial pedestrianized zone can provide citizens and tourists with entertainment and
socialization, and the environmental conditions in this region can improve people’s recreational and
living activities, so the quality of the thermal environment needs to be discussed [4]. In accordance with
previous studies, people’s thermal comfort in the outdoor environment will be affected by different
urban design parameters including aspect ratio (H/W, H is the average height of the building and the
W is the width of the street), sky view factor (SVF), street orientation, urban vegetation and paving
material of ground surface. The aspect ratio (H/W) expresses the ratio between the average height of
the building and the street width [4], several studies [5–7] have shown that increasing building average
height (aspect ratio), impeding solar radiation and providing shading can contribute to ameliorate the
thermal environment. The second factor is the sky view factor (SVF), which is expressed as “the ratio of
the sky which can be seen from a stable position on a surface to that potentially available” [8], this index
is a number ranging from 0 to 1. A previous study has shown that a lower SVF brings lower daytime
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temperatures in canyon space [9]. In addition, SVF also affects the level of the wind speed, and a study
found that a 10% increase in SVF will lead to an 8% increase in wind speed [10]. The street orientation
is considered as the third factor for influencing the thermal environment, it defines the standard of
solar access to the inner street, a previous study found that the mutual shading on the west and the east
is the main reason for a lower air temperature in a north–south-oriented street in the afternoon [11].
As well as the aforementioned three factors, the urban vegetation is another significant factor for
improving people’s thermal sensation in summer, which cools down the environment through shading
and evapotranspiration. A study conducted in Hong Kong shows that a 25%–40% increase in the
percentage of trees will reduce the daytime heat island by 0.5 ◦C [12], a 20% increase in the number
of trees in the campus of Saga University, Japan, decreases the average maximum temperature by
2.27 ◦C in the summer [13] and field measurement in the hot-humid climate zone of Singapore shows a
difference of 2.0 ◦C between tree canopy and ambient area [14]. Also, changing the paving material
of the ground surface with higher albedo is another strategy to alleviate heat stress. A study in the
hot-humid climate zone of southern China shows that the 2% increase in paving material with higher
albedo will reduce by 0.3 ◦C in the outdoor environment [15].

While previous studies have discussed the cooling effects of different urban design parameters,
most of them were evaluated separately, and a comprehensive system to evaluate the relative importance
of different parameters in the urban built environment is lacking, especially in the commercial
pedestrianized zone. In this study, the field survey and numerical simulation are conducted to assess
the cooling effect of each different parameters, and the final findings will put forward a comprehensive
standard for helping the local managers and policy makers to choose the best strategy to improve
outdoor thermal comfort and health.

2. Methodology

2.1. The Methodological Framework

The methodological framework of this study is shown in Figure 1. On-site measurement is carried
out, where the measured data are compared to the output results of ENVI-met by linear regression
and the index RMSE (root mean square error) to validate the simulated performance. After that, we
put forward some scientific hypotheses to understand the effect of different mentioned urban design
parameters in cooling the thermal environment, this helps to the select the nest strategy to improve
people’s thermal comfort and health.
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2.2. Research Area and Field Survey

Due to the effect of the monsoon climate, Tai Zhou city (Southern China) is very hot and humid in
the summer [16]. The current study was conducted in Dao He Old Block, which is a Chinese traditional
architectural settlement from ancient times and is now a famous scenic spot of the city that attracts
many tourists every year [17] (Figure 2).
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The on-site measurements of the field survey were carried out on 30 and 31 July 2016 between 9:00
am and 5:00 pm. According to the published meteorological information of the local administration, the
hottest time of a year appears in July and the maximum can reach 37 ◦C [16]. The data of air temperature
and relative humidity were collected by a stable microclimate machine (TR-72wf), its accuracy was
0.1 ◦C for air temperature and 0.1% for relative humidity. In addition, the wind velocity was recorded
using an anemoscope, which also had high accuracy. Table 1 shows the detailed meteorological data of
the two measured days.

Considering the historical meaning and the importance of the heritage, the whole zone is divided
into six parts for collecting data in accordance with different geometry, each point has typical meaning
in this study [18] (Figure 3).Int. J. Environ. Res. Public Health 2020, 17, x 4 of 20 
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The selected first point (point-1) is in a northwestern street, aspect ratio (H/W) being 4.6, and this
point has the highest aspect ratio in this commercial zone. Like point-1, point-2 is also a northwestern
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street with a different H/W, being 1. Different from the former two points, the third point (point-3)
is in a north–south directional street, with the H/W being 2.3. Like point-3, point-5 is also located in
a north–south directional street with a higher H/W, being 2.75. In addition, point-4 is in the unique
north-western street of the research site, and the last point (point-6) is located in an open space, which
is covered by a little vegetation (Figure 4 and Table 2).Int. J. Environ. Res. Public Health 2020, 17, x 5 of 20 
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Table 1. Meteorological data on 30 and 31 July 2016.

Time Weather Maximum Air
Temperature (◦C)

Minimum Air
Temperature (◦C)

Wind Velocity
(m/s)

Wind
Direction

30 July Sunny 37 27 2.0 South–East
31 July Cloudy 36 27 2.9 South–East

Table 2. Characteristics of the selected points [18].

Point Site Characteristic Surface Type Shade Aspect Ratio (H/W)

1 North-West oriented street Grey brick Yes 4.6
2 North-West oriented street Grey brick Yes 1
3 North-South oriented street Grey brick Yes 2.3
4 East-West oriented street Grey brick Yes 2.3
5 North-South oriented street Grey brick Yes 2.75
6 Open space Grey granite No 0.33

Another step to ensure the accurate geometry of the selected points in the model built by ENVI-met
is a comparison of the simulated and measured SVF. The results of the measured results of the SVF
are calculated by the software Ray-man, which can calculate the SVF through the hemisphere photo
captured by a fish-eye camera. The simulated result can be conducted by the ENVI-met. The final
validation between these two shows a small deviation—this means the simulated model can reflect the
real conditions of the selected research site (Figure 5).
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The meteorological data, including air temperature and relative humidity (RH), are recorded
every minute, and the information of the used instrument is shown in Table 3.
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Table 3. Introduction of the measured instruments.

Instrument Mode Accuracy Range Interval Sensor

Relative Humidity (RH) Automatic ±5% RH 10%–95% RH 60 s TR-70wf
Air Temperature Automatic ±0.5 ◦C 0–+55 ◦C 60 s TR-70wf

2.3. Numerical Simulation by ENVI-met

As technology has developed, numerical simulation has been widely used, mainly due to its
capability of calculating meteorological conditions, vegetation and soil processes and building surface
energy fluxes within the outdoor urban environment across a serious of urban configurations. To date,
ENVI-met software has been the most accurate for assessing the outdoor thermal environment [19–23].
With this software, all modelling systems must be compared to collected field survey data to determine
their ability in supplying accurate output data under the urban environment.

As opposed to other software, vegetation, including trees and grass, is grouped in accordance
with its size, type and leaves, which are all essential factors for affecting radiation and reflection. As
ENVI-met analyzes vegetation based on leaf area density (LAD) and not leaf area index (LAI), the
following equation is used to show the relationship between the two parameters:

LAI =

h∫
0

LAD.z (1)

where h is the height of the tree (m) and z is vertical grid size.
According to field measurements, in this study, the local border tree was the camphor tree

(Figure 6). The detailed data of the tree was added to the ENVI-met plant database to fulfil this research
(Table 4) [24]. The green grass used in this block is shown in Figure 7. The green grass used in this
block is shown in Figure 7, in which the height of the grass is 0.25 m and the LAD is 0.25 m2/m3.
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The initial input data of the various meteorological elements used in the ENVI-met simulation are
shown in Table 5. In this study, the whole simulation was conducted over a 48-h period, starting from
midnight 00:00 on 30 July 2016, with calculations every 1 min. The simulation results were output on
an hourly basis. The simulated model in ENVI-met is shown in Figure 8.

Table 5. Initial simulated data for ENVI-met.

Input for Configuration File Value

Start simulation 0:00, 30 July 2016
Total simulation time 48 h

Wind speed in 10m (m/s) 2.0
Wind direction 145

Initial air temperature (◦C) 37
Relative humidity (%) 45

Roughness length 0.1
Number of x grids 200
Number of y grids 100
Number of z grids 20

Size of the grid in dx (m) 3
Size of the grid in dy (m) 3
Size of the grid in dz (m) 2

Albedo ground 0.4
Albedo roof 0.2
Albedo wall 0.3
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2.4. The Validation Between Measured and Simulated Data

To quantify the gap between the measured and simulated data, the root mean square error (RMSE)
was calculated for each selected point. The index RMSE is a significant factor for calculating the error
and has been widely used in previous studies [24,25]. If the RMSE can reach or approach zero, the
most accurate model can be achieved. A lower RMSE value means that the simulated results are
within the measured value. Figure 8 shows the RMSE values between the measured and simulated air
temperature and relative humidity.

As is shown in Figure 9, point-3 had the highest error in the daytime, which reached 2.85 ◦C. This
error can be attributed to the position of the recording machine. Due to consideration for tourist safety,
the data instrument was not fixed in the middle of the street but instead was fixed along the sidewalk.
In addition, the accuracy of the relative humidity was better than that of air temperature. As well as
the index RMSE, analyzing the correlation between the simulated and measured data was another
step in evaluating the numerical simulation. To test the validity of the simulated model, the measured
data were fitted with the simulated data by linear regression. A good liner regression was obtained,
as shown in Figures 10 and 11, where R2 values for air temperature of this region ranged from 0.75
to 0.9578, while those for relative humidity were between 0.7518 and 0.9813. In reality, the deviation
between simulated and measured data may have been caused by anthropogenic heat from human
activity. These results are similar to or even smaller than those from previous studies [26–28]. The final
linear regression values proved that ENVI-met is valuable software that can be used to fulfil future
research as part of this study.Int. J. Environ. Res. Public Health 2020, 17, x 2 of 20 
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Figure 10. The correlation between the simulated data and measured data on 30 July (Ta air temperature,
RH relative humidity) [18].
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Figure 11. The correlation between the simulated data and measured data on 31 July (Ta air temperature,
RH relative humidity) [18].
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2.5. The Thermal Index for Assessing Humans’ Thermal Sensation

Current research in both climatology and biometeorology has made a full contribution to
developing human thermal comfort indices, such as standard effective temperature (SET) [29],
predicted mean vote (PMV) [30], physiologically equivalent temperature (PET) [31] and so on. Based
on human energy balance, the PET index has been widely used in outdoor spaces and is defined
as a typical indoor setting for the heat budget of the human body balanced with the same core
and skin temperatures as those in outdoor space; moreover, it uses the very simple unit (°C) as the
thermal indicator of the outdoor microclimate. A study has shown the thermal sensation classification
for humans in the hot-summer and cold-winter climate zone by collecting data and questionnaire
responses, as is shown in Table 6 [18]. In our study, we used it for assessing the thermal conditions of
our research site.

Table 6. The distribution of humans’ thermal sensation in hot-summer and cold-winter area [18]. PET
= physiologically equivalent temperature.

Thermal Sensation PET(◦C)

Very Cold <−4
Cold −4–3
Cool 3–11

Slightly Cool 11–19
Neutral 19~26

Slightly Warm 26~34
Warm 34~42
Hot 42~49

Very Hot >49

3. Results

Considering the microclimate in the selected points under the base case, the hottest time occurred
at 3:00 pm. As can be seen in Figure 12, the PET values in the two measured days at 3:00 pm were
very high.

Figure 12a indicates the thermal sensation in the first measured day, in which the lowest PET was
48.51 ◦C and the highest value reached 68.60 ◦C. According to the thermal sensation for hot-summer
and cold-winter climate zones of southern China, nearly the entire block was within the “hot” and
“very hot” zones. Due to the different weather conditions in the two measured days, we used the
published data from the local weather station. It was clear that the average air temperature in the first
measured day was 1 ◦C higher than that in the second day, which directly led to a higher PET value
in the daytime. Figure 12b shows that the PET values at 3:00 pm ranged from 46.92 ◦C to 67.20 ◦C.
It was even lower than the first day; however, the entire region was still in the “hot” and “very hot”
zones. According to previous studies, it is evident that a stronger cooling effect is obtained with a
higher background daytime air temperature [32,33]. In addition, the effect of paving material with
higher albedo is better at reducing surface temperatures on sunny days than on cloudy days [34]. It
has also been shown that the positive effect of vegetation on hot, sunny days is two times higher than
on cold, cloudy days [35]. In this study, the hottest time appeared at 3:00 pm; therefore, the PET at 3:00
pm on 30 July was selected for calculations for further study.

The box plot figure, reflecting the comparison among a series of group data, is established under
the existing scenario (Figure 13), in which the extreme summer PET is within 48.4 to 67.2 ◦C in all
selected points.
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4. Discussion

4.1. Outdoor Thermal Environment Under New Cases

The simulation in this study aimed to provide a comprehensive system for choosing the most
effective strategy to improve outdoor thermal comfort in a commercial pedestrianized zone. For each
parameter, hourly PET was carried out using the ENVI-met tool. The future strategies were modelled in
four different cases. As explained above, the new models were simulated under the same microclimate
conditions with the existing scenario. To be mentioned, the new cases are based on the local design
specification [34], in which the buildings in a commercial pedestrianized zone will not be designed
to exceed three stories, and the coverage ratio of vegetation will not be less than 25%. The first case
(case-1) aims at understanding the detailed effect of increasing the building height. In the second case,
the number of trees is increased to provide additional canopy coverage for this region. In the third
case, the grass coverage ratio is provided to alleviate heat stress, also, the coverage ratio is same as
that in case 2. The last case aims at researching the cooling effect of the paving material with a higher
albedo. Table 7 shows the cases, modelling the future scenarios.

Table 7. The tested scenarios with new strategies.

Scenario Selection Strategies

Case-1 Increasing average building height.
Case-2 The trees are implanted in the research site.
Case-3 The grass is implanted in the research site.
Case-4 Changing the paving material with a high albedo.

Based on the current conditions of the simulated model, the existing case was defined as the base,
and four new cases were developed to compare and evaluate the cooling effects of different parameters
(Figure 14).
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The designed scenarios included the following: The first scenario (the base-case) was the base
condition, which was derived from current conditions with building and vegetation coverage ratios
of 67.3% and 10.3%, respectively. In this case, there were no three-story buildings in this region.
Single-story buildings covered 50.3% and double-storied buildings occupied 17%. In addition, tree
coverage was 3.5% and grass coverage was 6.8%, which was much less than the local design specification
(25% of vegetation). The second scenario (case-2) aimed at increasing building height to understand
the cooling effect—the three-story building coverage ratio was increased to 67.3% of this area. In the
third scenario (case-2), the tree coverage ratio was increased to 18.2%. The fourth scenario (case-3) was
applied by increasing the grass coverage ratio to improve human thermal sensation of comfort and to
evaluate the cooling effect. The last scenario (case-4) was conducted by changing the existing paving
material to material with a high albedo to understand the cooling effect.

Under the new cases, the PET improvement appeared in the whole region. The peak time at
daytime (3:00 pm) during the measured period is also compared at the pedestrian level (a height of
1.5 m) (Figure 15).Int. J. Environ. Res. Public Health 2020, 17, x 8 of 20 
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The corresponding value and impact of different parameters is estimated as:

∆PET = PET− PETs (2)

where PET represents humans’ thermal comfort in this region and PETS is the new thermal comfort
after changing different parameters. These comparisons are conducted to evaluate and understand the
cooling effect of different parameters, as is shown in Figure 16.

These PET results were processed with the same range and conditions to obtain a fair comparison
between the base case and the new cases. On the first measured day (30 July 2016), increasing building
height not only supplied more shading for humans but also impeded solar radiation during the
daytime. The impact of shading on thermal comfort was quantified by calculating the difference of
PET between canyon space and open space (Figure 16a), in which a positive ∆PET (thermal comfort
improvement) from 0.8 to 12.6 ◦C was achieved. Meanwhile, an invalid effect was found in the open
space during the daytime. The cooling function of trees is through transpiration and by providing
shading to prevent solar radiation, thus improving thermal comfort during the daytime. It is clear that
the reduction of PET was achieved both in canyon space and open space (Figure 16b), in which the
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∆PET values ranged from 0.3 to 9.2 ◦C. Figure 16c shows the effectiveness of the grass, the cooling
effect of which, unlike trees, depends only on transpiration, which leads to a worse cooling result
compared with trees. Compared to other cases, as is shown in Figure 16d, changing the pavement
material with high albedo material also improved thermal comfort, but the extent was limited.
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In our study, numerical simulations were conducted to evaluate the correlation between different
parameters and human thermal sensation of comfort in hot summers. The current results show the
spatial distribution of human thermal comfort modification through the synergistic effect of different
parameters in general. The next section provides a more thorough description about the effect of
each parameter.

4.2. Correlation Between Different Parameters and Humans’ Thermal Comfort

As mentioned above, the whole area consisted of open space and canyon space. The effectiveness
of different parameters in open space is shown in Figure 17.

Different parameters had different effects in improving thermal comfort at the hottest times during
the measured period. Multiple regression analyses of ∆PET values of the different parameters at 3:00
pm were conducted to assess the contribution of these to improving thermal comfort. The correlation
coefficient (R2) between PET and different parameters served to describe the proportion that could
be explained by the variables of the regression model [35]. A strong positive correlation was found
between the percentage of trees (case-2) and ∆PET, with the correlation coefficient being 0.9713. It was
observed that a 3% increase in the coverage ratio of trees reduced PET by 0.78 ◦C at the hottest time
during the extreme summer. Meanwhile, an irrelevant relationship between building height and ∆PET
was observed (case-1), which meant that increasing building height could not effectively improve
thermal comfort in open spaces. The other parameters, including grass (case-3) and pavement material
(case-4), could reduce PET, but the extent was limited.

Figure 18 shows the changing situation in canyon space, where, unlike in open space, the heat
stress could be alleviated in all the new cases. Increasing building height could effectively reduce PET
(case-1) during the daytime. Based on its values, it could be seen that a 10% increase in the coverage
ratio of the three-story building could decrease the PET by 1.3 ◦C. This effect could be attributed to the
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shading in the street. In addition, increasing the tree coverage ratio could also lead to thermal comfort
improvement (case-2). An increase of 3% in the coverage ratio of trees could result in a decrease of
0.9 ◦C in PET values. The effect of grass (case-3) occurred through the reduction of reflected radiation
to improve thermal comfort, but the result was poor, as was the case with increasing the coverage
ratio of grass. Changing the pavement material to high albedo material (case-4) could decrease diffuse
reflection, which could improve thermal comfort, but the simulated result was not obvious.
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Based on the multiple regression results, designers and policy makers can choose the best way to
redesign this block and improve the outdoor energy efficiency. The final results, which indicated the
correlation between each parameter and human thermal comfort, can be classified as different types of
choices (Figure 19).
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In terms of thermal comfort, the PET index in this study was used to calculate the energy balance
of the human body, which is directly affected by surrounding factors. The numerical simulation results
suggest to us that a better prediction of the effects of pedestrian block renewal can improve humans’
thermal comfort by choosing the best strategy, thus helping to reduce outdoor energy consumption
and improve outdoor thermal health for humans.

5. Summary and Conclusions

This study aimed at investigating the cooling effects of different parameters (building height, tree,
grass and pavement material) on reducing heat stress during hot summers. In order to understand
it well, field measurements and numerical simulations were conducted to evaluate human thermal
comfort in this region, which can help designers and policy makers have a deeper understanding of
the correlation between thermal comfort and different parameters and thus choose the best strategy to
improve thermal comfort and the outdoor thermal environment. While some conclusions are common
sense, quantitative results are still necessary, especially in the commercial pedestrian block. In this
study, the distributions of PET values at 3:00 pm showed that the thermal environment in the block
can be improved with new design parameters, where ∆PET ranges had maximum and minimum
values at 12.6 and 0.3 ◦C, respectively. According to the final simulated results, regression analyses
indicated that the most effective strategy in improving thermal comfort in the open space is to increase
the coverage ratio of trees. In the canyon space, the most effective strategy is to increase the coverage
ratio of three-story buildings.

The final outcome of this study can provide a comprehensive standard for designers and policy
makers. Only by increasing the integration of municipal actors and researchers can mitigation actions
be developed to improve the livability and quality of the commercial pedestrianized zone as well as
the human thermal sensation of comfort. The following is suggested:

1. Increasing average building height and three-story building coverage ratio in canyon space can
largely improve people’s thermal sensation.

2. Increasing the tree coverage ratio in open space can largely reduce heat stress at daytime. Our
research further shows there is a strong correlation between the reduction of PET and increases in
the tree coverage ratio.

3. Reducing the percentage of hardened ground in the commercial zone would be beneficial. In this
site, local managers can use lawn or grass to replace the existing ground surface.

In addition, the limitations of this study cannot be neglected. Firstly, even though the ENVI-met
software utilized has very high accuracy in forecasting the outdoor thermal environment, the deviation
between measured and simulated data still cannot be ignored. Additionally, this work only simulates
a single kind of tree, which in the real world may not be present. Thus, in future studies, we should
consider different kinds of trees. Also, in future studies, we will overcome the mentioned limitations
and provide a briefer way to improve humans’ thermal health in the hot summer.
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